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Abstract

This paper introduces an information retrieval based 
approach for automating the detection and classification 
of non-functional requirements (NFRs).  Early detection 
of NFRs is useful because it enables system level 
constraints to be considered and incorporated into early 
architectural designs as opposed to being refactored in at 
a later time.  Candidate NFRs can be detected in both 
structured and unstructured documents, including 
requirements specifications that contain scattered and 
non-categorized NFRs, and freeform documents such as 
meeting minutes, interview notes, and memos containing 
stakeholder comments documenting their NFR related 
needs.  This paper describes the classification algorithm 
and then evaluates its effectiveness in an experiment 
based on fifteen requirements specifications developed as 
term projects by MS students at DePaul University.  An 
additional case study is also described in which the 
approach is used to classifying NFRs from a large free 
form requirements document obtained from Siemens 
Logistics and Automotive Organization.

1.  Introduction 

Non-functional requirements (NFRs) describe 
important constraints upon the development and behavior 
of a software system.  They specify a broad range of 
qualities such as security, performance, availability, 
extensibility, and portability.  These qualities play a 
critical role in the architectural design [15] and should 
therefore be considered and specified as early as possible 
during system analysis.  

Unfortunately NFRs are often discovered in an ad-
hoc fashion relatively late in the development process.  
Quality constraints of stakeholders, elicited during the 
requirements gathering process, get documented across a 
range of artifacts including memos, interview notes, and 

meeting minutes, and analysts frequently fail to obtain a 
clear perspective on the system-wide non-functional 
requirements.  Resulting requirements specifications are 
often organized by functionality with non-functional 
requirements scattered throughout the specification.  This 
can lead to important conflicts going undetected and 
architectural solutions that fail to meet the stakeholders’ 
real needs.  This paper proposes a solution to this problem 
by introducing a method, known as the NFR-Classifier, 
for retrieving and classifying NFRs scattered across both 
structured and unstructured documents.   

The NFR-Classifier can also be used to detect and 
classify early aspects.  An early aspect is a concern that 
cross-cuts the dominant decomposition of a system [4] 
and is found in the requirements specification or other 
early design documents.  Many “early aspects” are 
identical to high-level NFRs such as security, 
performance, portability, and usability.   Intermediate 
level aspects include concerns such as logging and 
authentication, while lower-level concerns focus on 
programmatic concepts such as buffering and caching.  
The classification method described in this paper is 
applicable to the high and intermediate level concerns that 
are specified in the requirements specification or other 
early documents.  Lower level concerns that belong to the 
solution domain at the programmatic or design level are 
not discussed further.  Early discovery of aspects is 
significant not only for purposes of architectural design, 
but also so that candidate aspects can be evaluated and 
modeled in the design and code of the system,  thereby 
minimizing the need to ‘mine’ and refactor aspects from 
the code at a later date.    

The NFR-Classifier uses information retrieval 
methods to find and identify NFRs.  The method assumes 
that different types of NFR are characterized by the use of 
relatively distinct keywords that we call ‘indicator terms’.  
When those indicator terms are learned for a specific NFR 
type, they can be used to detect requirements, sentences, 
or phrases, related to that type. The process, which is 
depicted in Figure 1, includes the three primary phases of 
mining, classification, and application. During the 
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training phase indicator terms are mined from existing 
requirements specifications in which NFRs have been 
manually categorized by type.  These terms are then used 
during the retrieval phase to detect and classify other 
NFRs.  Finally during the application phase, the classified 
requirements are used to support more advanced software 
engineering activities such as requirements negotiation or 
architectural design.    

The remainder of this paper is structured as follows.  
Section 2 surveys existing methods for eliciting and 
discovering non-functional requirements and early 
aspects.  This section also describes a preliminary 
experiment we conducted using a fixed key-term 
approach.  Section 3 introduces the new NFR-Classifier 
method, and describes the process for mining terms and 
using them to classify NFRs.  Section 4 reports on an 
experiment we conducted to evaluate the effectiveness of 
the approach using fifteen different requirements 
specifications constructed as term projects by MS students 
at  DePaul University.  Section 5 describes an industrial 
case study based on a large user requirement document 
developed for a project at Siemens Logistics and 
Automation plant.  In this study, the classification results 
obtained from reusing previously mined indicator terms 
are compared to results obtained from retraining the tool. 
The observed positive association between the 
performance of our classifier and the training set size is 
discussed in Section 6, and Section 7 concludes with a 
discussion of the application of this approach to the 
requirements analysis process, and suggestions for future 
work. 

2.   Existing NFR classification methods 

 There are two primary approaches to NFR 
classification.   These include elicitation methods that 
support stakeholders as they reason about, identify, 
negotiate, and model NFRs; and also detection methods 
for semi-automated or manual extraction of NFRs from a 
variety of existing documents.  

2.1  Elicitation techniques 

Elicitation methods frequently rely upon creative 
brainstorming or the use of checklists and NFR templates 
to trigger stakeholders’ input.  For example Win-Win 
methods [12] provide generic checklists and require 
stakeholders to contribute, prioritize, and negotiate NFRs 
perceived to be important to the success of the system.  
The Architectural Assessment Method (ATAM) models 
NFRs using utility trees in which stakeholders describe 
quality requirements within a hierarchical abstraction of 
high-level goals [13].  The NFR framework provides 
catalogs to help analysts define NFR quality goals, 

potential implementation solutions, and to identify 
conflicts [6].  All of these techniques provide stakeholders 
with a structured approach for brainstorming and 
documenting their NFR needs and also produce a set of 
categorized NFRs.  In these cases, the NFR-Classifier can 
provide input into the process by retrieving and displaying 
NFR related comments made by stakeholders and 
recorded in documents produced during earlier elicitation 
activities.   

2.2  Detection techniques 

With the increasing popularity of Aspect-Oriented 
Programming (AOP), several researchers have developed 
techniques for detecting low-level aspects in the design 
and code and ‘early-aspects’ from requirements 
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Figure 1.  The NFR classification process 
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specifications [14].  At the program level, aspects can be 
‘mined’ using clone detection techniques such as pattern 
matching against the abstract syntax tree, or through 
analyzing the system’s meta-model [5].  Runtime methods 
such as the analysis of execution traces [19] can also be 
used at the code level.   None of these approaches are 
applicable to the detection of early aspects, including 
NFRs, which are less formally expressed and exist prior to 
the system becoming executable. 
 However, several semi-automated techniques have 
been proposed for mining early aspects.  Rosenhainer 
proposed a basic information retrieval (IR) method that 
required an analyst to manually search through the 
requirements looking for candidate aspects [16]. If a 
candidate aspect were found, then it was used as the basis 
of an IR style query to find related requirements.  Several 
researchers have described effective methods for 
implementing such artifact based searches [2,7,8,11,18].  
However Rosenhainer’s approach is labor intensive as it 
requires manual inspection to discover a ‘starting point’ 
for the analysis, and it also depends on finding a good 
starting requirement that contains similar terms to other 
aspect-related requirements. 

The Theme/Doc method [3] also provides semi-
automated support for early aspect mining.  An analyst 
parses the requirements specification to identify 
keywords, which are then used by the tool to generate a 
visual representation of the relationships between 
behaviors.  This view is used by the analyst to identify 
candidate aspects.  Again, the approach is rather labor 
intensive as the analyst needs to perform a preliminary 
manual search for keywords in addition to a later analysis 
of the candidate concerns. It also presupposes that the 
requirements specification is grammatically structured in a 
certain way.  However Theme/Doc provides the 
opportunity to discover aspect types that are unique to a 
specific project in addition to commonly occurring types.  

Sampaio et al proposed a method that uses natural 
language processing to first identify viewpoints based on 
nouns occurring in the specification and then to find 
actions (ie verbs) that occur across multiple viewpoints.  

This approach has potential for identifying unique aspect 
types, but it requires significant user feedback to evaluate 
viewpoints and assess the feasibility of the candidate 
aspects.  It may also miss aspects if different action verbs 
are used to represent the same concern across different 
viewpoints [17]. 

Although these techniques for early aspect 
identification are applicable to the problem of NFR 
classification, they all require significant user 
involvement. This suggests the need to find a more 
automated approach for identifying NFRs.   

2.3 Keyword classification method 

As a precursor to our work on the NFR-Classifier we 
investigated whether a pre-defined fixed set of keywords 
could be used to classify each type of NFR. This simpler 
approach would avoid the need to develop and use a 
training set.   A small experiment was conducted in which 
a set of keywords, listed in Table 1, were extracted from 
catalogs of operationalization methods for security and 
performance softgoal interdependency graphs (SIGs) [6].  
These catalogs represent extensive bodies of knowledge 
related to goals and potential solutions for each of these 
NFRs and so provided a standardized set of keywords.  
The keywords were used to retrieve NFRs from a set of 
fifteen requirements specifications developed by DePaul 
MS students as term projects for a course in Requirements 
Engineering1.  Any requirement containing one or more of 
these keywords was classified as a candidate security or 
                                               
1 Approximately 80% of the students in this course work 
in the software industry as professionals.  Out of the 45 
students in the class the top fifteen projects were selected 
for this experiment, based primarily upon grades assigned 
by the course instructor.  The projects represented a broad 
range of topics. The high ratio of NFRs to functional 
requirements reflects the time limitations that inhibited the 
writing of a more complete set of requirements.  
Requirements were specified using the Volere template 
http://www.systemsguild.com/  

Table 1.  Results from fixed keyword retrieval and classification 

NFR Type Keywords extracted from a SIG Catalog [6] Recall Precision Specificity 

Security 

Confidentiality, integrity, completeness, accuracy, 
perturbation, virus, access, authorization, rule, validation, 
audit, biometrics, card, key, password, alarm, encryption, 
noise. 

0.798 0.567 0.871 

Performance 
space, time, memory, storage, response, throughput, peak, 
mean, index, compress, uncompress, runtime, perform, 
execute, dynamic, offset, reduce, fixing, early, late 

0.609 0.396 0.843 
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performance requirement respectively.  A multiple 
categorization approach was taken in which a requirement 
containing both a security keyword and a performance 
keyword was classified into both categories.  

Results were evaluated for each NFR type using the 
standard metrics of recall, precision, and specificity where 
recall measures the number of NFRs that were correctly 
retrieved and categorized; precision measures the total 
number of correctly retrieved NFRs in respect to the total 
number of retrieved NFRs [10], and specificity measures 
the ability of the classifier to correctly reject requirements 
that are not of the right NFR type [1].  The results of this 
experiment are shown in Table 1 and indicate that the 
security keywords returned a recall of 80% and precision 
of 57%, while the performance keywords returned a recall 
of 61% and 40% precision.  Observation showed that 
many of the security keywords were in fact shared by 
other types of NFRs, and that several of the target NFRs 
did not contain any of the keywords and so were not 
retrieved.  One of the primary stumbling blocks of this 
approach (and the reason that we did not evaluate more 
NFRs using this method) was the difficulty of finding 
accepted and standardized catalogs for the other types of 
NFRs specified in our data sets.   

3. The NFR-Classifier 

The NFR-Classifier addresses this problem by using a 
training set to discover a set of weighted indicator terms 
for each NFR type.  This approach means that the NFR-
Classifier is limited to recognizing and retrieving NFR 
types for which it has been trained.   However this is not 
overly limiting. Although more than one-hundred and 
fifty NFR types and numerous lower level aspects have 
been documented [6], in practice a much smaller subset of 
common ones are generally of interest during the system 
design process.  The approach also has several benefits 
over the standard keyword method.  Indicator terms can 
be automatically mined from existing pre-categorized 
requirement specifications, and therefore customized for 
an organization in accordance with their own standard 
terminologies and policies.  
 The NFR-classifier method consists of two stages. 
During the first stage, a set of indicator terms is identified 
for each NFR category. This step assumes the existence of 
a set of correctly pre-classified requirements that can be 
used for training.  The requirements in the training set are 
used to compute a probabilistic weight for each potential 
indicator term in respect to each NFR type. The weight 
measures how strongly an indicator term represents a 
requirement type.  For example, terms such as 
“authenticate” and “access” that occur frequently in 
security requirements and infrequently in other types of 
requirements, represent strong indicator terms for security 
NFRs, while other terms such as ‘ensure’ that occur less 

frequently in security requirements or are found in several 
different requirement types, represent much weaker 
indicators.     
 Once indicator terms are mined and weighted, they 
can be used in a second step to classify additional 
requirements.  A probability value that represents the 
likelihood that the new requirement belongs to a certain 
NFR type is computed as a function of the occurrence of 
indicator terms of that type in the requirement. A 
requirement is then classified according to a certain NFR 
type if it contains several indicator terms representative of 
that type. Requirements receiving classification scores 
above a certain threshold for a given NFR type will be 
classified into that type, and all unclassified requirements 
will be assumed to be functional requirements.  Because 
classification results can only be considered successful if a 
high percentage of the target NFRs are detected for a 
specific type, in all of the experiments described in this 
paper the threshold was established with the objective of 
achieving high recall results.  
 Prior to classification, the requirements must be 
preprocessed and reduced to a set of keywords [10]. The 
preprocessing step first eliminates all common “stop” 
words that do not provide any relevant information on the 
document lexical content (for example conjunctions and 
prepositions). The remaining words are then reduced to 
their stemmed form, by eliminating plurals, past tenses, 
and other suffixes.  The following sections more formally 
describe the two steps of mining and classification. 

3.1   Indicator terms mining 

 Let Q be a given requirement type. Indicator terms of 
quality type Q are found by considering the set SQ of all 
type Q NFRs in the training set. The cardinality of SQ is 
defined as NQ. The frequency freq(dQ,i,t) of occurrence of 
term t in document dQ,i  is computed for each document in 
SQ. Each term is assigned a weight score that measures 
how well the term helps identify a requirement of quality 
type Q.   
 So for each type Q and keyword t, the weight score 
PrQ(t) is defined as a probability value computed as 
follows: 

NP
tNP

tN
tN

d
tdfreq

N
t QQ

N

i iQ

iQ

Q
Q

Q )(
)(
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||
),(1)(Pr

1 ,
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The first factor 
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i iQ
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tdfreq

N 1 ,

,

||
),(1

in the expression 

above computes the average frequency of occurrences of 
term t in type Q NFRs rescaled by the documents size 
|dQ,i|. The factor increases if a term appears more 
frequently in type Q documents, and therefore it can be 
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considered as a potential indicator term for type Q NFRs. 

The second factor 
)(
)(

tN
tNQ  is the percentage of Q type 

documents in SQ containing t with respect to all 
requirements in the training set containing t, whose 
number is denoted by N(t). This factor decreases if the 
indicator term t is used broadly throughout the 
requirements specification.  If the term is only used in Q
type requirements, it will evaluate to 1 for that type. The 

third factor 
Q

Q

NP
tNP )(

is the ratio between the number 

NPQ(t) of system projects containing type Q documents 
with term t and the number NPQ of all projects in the 
training set with type Q NFRs. The purpose of this 
rescaling factor is to decrease the weight PrQ(t) for terms 
that are project specific, and to increase the weight for 
terms that appear in several projects containing type Q
documents.  

For each term t, a probability score PrQ(t) is 
computed. Terms are ranked by decreasing order 
according to PrQ(t). The top K terms are identified as 
indicator terms for the type Q. Experiments to evaluate 
and select the best value for K are presented in Section 4.  

3.2 NFR classification

 A classification algorithm for NFRs is defined by 
computing a probability score PrQ(R) that evaluates the 
probability that a certain NFR R is classified as Q type. 
This probability score depends on the lexical content of 
requirement R. We assume that type Q NFRs are more 
likely to contain indicator terms for that type.  

 Let IQ be the set of indicator terms for a quality type 
Q. We assume that the weighted indicator terms in IQ are 
identified and their weights computed from a training set 
that contains correctly pre-categorized NFRs. The 
indicator terms are mined using the expression in (1).  
 The classification score that an unclassified 
requirement R belongs to a type Q is defined as follows: 

∈

∈=

Q

Q

It
Q

IRt
Q

Q t

t
R

)(Pr

)(Pr
)(Pr     (2) 

 The numerator is computed as the sum of the term 
weights of all type Q indicator terms that are contained in 
R, and the denominator is the sum of the term weights for 
all type Q indicator terms. The probabilistic classifier for a 
given type Q will assign higher score PrQ(R) to an NFR R 
that contains several strong indicator terms for Q. Results 
on the application of our classifier are reported below.  

4.  Evaluating the classifier model 

 The training set used in the experiments again 
consisted of the 15 requirements specifications developed 
as term projects by MS students at DePaul University. 
These specifications contained a total of 326 NFRs and 
358 functional requirements.  NFR types included 
availability, look-and-feel, legal, maintainability, 
operational, performance, scalability, security, and 
usability. As there were insufficient portability and 
process requirements, these NFR types were not included 
in the study.  Counts for each requirement type are 
displayed in Table 2, while Table 3 depicts the top 15 
indicator terms that were mined from each NFR type. 

Table 2: Counts of requirement specifications by project and quality type 

 Project Number 
Quality type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 TOTAL 
Availability 1 1 1 0 2 1 0 5 1 1 1 1 1 1 1 18
LookAndFeel 1 2 0 1 3 2 0 6 0 7 2 2 4 3 2 35
Legal 0 0 0 3 3 0 1 3 0 0 0 0 0 0 0 10
Maintainability 0 0 0 0 0 3 0 2 1 0 1 3 2 2 2 16
Operational 0 0 6 6 10 15 3 9 2 0 0 2 2 3 3 61
Performance 2 3 1 2 4 1 2 17 4 4 1 5 0 1 1 48
Scalability 0 1 3 0 3 4 0 4 0 0 0 1 2 0 0 18
Security 1 3 6 6 7 5 2 15 0 1 3 3 2 2 2 58
Usability 3 5 4 4 5 13 0 10 0 2 2 3 6 4 1 62
TOTAL NFRs 8 15 21 21 37 44 8 71 8 15 10 20 19 16 12 326
Functional 20 11 47 25 36 26 15 20 16 38 22 13 3 51 15 358 
TOTAL  28 26 68 47 73 70 23 91 24 53 32 33 22 67 127 684 
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4.1 Classifying the NFRs 

To evaluate the effectiveness of the NFR-Classifier, a 
leave-one-out cross validation technique was applied 
against the fifteen software requirements specifications 
(SRS).  Fifteen iterations were conducted. During each 
iteration indicator terms were extracted from fourteen 
SRS’s that constituted the training set, and term weights 
for each NFR type were calculated based on the function 
in (1).  Two alternate methods were evaluated for 
selecting indicator terms from the training set:  
1) Top K terms, where K is a positive number.  For 

each NFR type, the K terms with the highest weights 
were selected as the indicator terms. 

2) All terms, where every term with a non-zero weight 
with regard to a specific NFR type was selected as an 
indicator term for that type. 

The extracted indicator terms were then used to classify 
requirements in the remaining SRS using the function in 
(2). A multiple classification scheme was used so that for 
any given NFR type, all requirements that scored higher 
than a certain threshold value were classified as that NFR 
type.  This meant that a single requirement could be 
classified into more than one NFR type, although 
implicitly if it represented an atomic requirement, it could 
only logically belong to one type.  As a side note, an 
additional experiment was conducted to compare the 
efficacy of multiple classification versus a “pick-top” 
method in which each requirement was assigned to only 
the NFR type for which it received the highest 

classification value. When the pick-top method was used, 
recall was problematic for almost all categories.  For 
example, recall dropped to 33% for legal, 9% for look-
and-feel, and 41% for maintainability.  The average recall 
obtained using this method was only 52% as opposed to 
76% using the multi-category method.  Based on these 
results, the multiple-classification approach was adopted. 

The goodness of the classifiers was evaluated by the 
three metrics of recall, precision and specificity for each 
NFR type in each single iteration of the experiment. 
Overall results were calculated by combining the results 
of the fifteen iterations.  As each SRS was subjected to 
classification in only one experiment, the combined 
results therefore represented the classification of each 
individual requirement only one time. 

4.2  Selection of indicator terms   

Three different values for K were used in our 
experiments: K=5, K=10 and K=15. Table 4 shows the 
overall recall and precision of the classification using 

Table 4.  Comparison of top-K  versus “All” terms 
extraction methods. 

Indicator Selection 
Method 

Recall Precision 

Top-5 0.6564 0.3242 
Top-10 0.7423 0.2400 
Top-15 0.7669 0.2480 
ALL 0.7392 0.2720 

Table 3.  Top 15 indicator terms ‘mined’ from the training set 

Rank Availability Legal 
Look & 
Feel 

Maintain-
ability 

Opera-
tional 

Perform-
ance Scalability Security Usability 

1 avail compli appear updat interfac second simultan onli us
2 achiev regul interfac mainten environ respons handl access easi
3 dai standard profession releas server time year author user
4 time sarban appeal new oper longer capabl user train
5 hour oxlei color chang product fast support inform product
6 pm php look dure system minut expect ensur abl
7 year pear simul promot databas take concurr data understand
8 technic legal product product browser process abl authent successfulli
9 downtim law compli addit window user number secur intuit

10 long estimat scheme everi web system user system learn
11 system regard logo budget comput let launch malici system
12 product complianc sound develop applic maximum process prevent click
13 seven rule brand season us complet next incorrect minut
14 defect requir feel integr internet flow product product self
15 asid izognmovi sea oper abl everi connect ar explanatori
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Top-5, Top-10, Top-15, and ‘all’ indicator terms 
respectively.  A classification threshold of 0.04 was 
maintained for all four of the experiments, meaning that 
only requirements that were given scores greater than 0.04 
for a particular NFR type were classified.  

The results indicated that among the Top-K methods, 
Top-5 returned the worst recall, about 10% lower than the 
other two methods. The classification accuracy showed no 
significant difference between the Top-10 and Top-15 
methods.  Precision remained at about 24% while recall 
improved slightly from 74.23% to 76.69% when changing 
the selection method from using Top-10 to Top-15 terms.  
The results also indicated that if all terms were retained as 
indicators then the recall was reduced by 2.7%, while 
precision was increased by 2.4% compared to the Top-15 
method.  As recall and precision tend to trade-off against 
each other, this difference was again considered relatively 
insignificant.  If the threshold had been slightly raised to 
remove some of the extra ‘background noise’ caused by 
the additional less significant terms, then recall would 
have likely decreased and precision increased to levels 
similar to Top-15. 

Surprisingly, there was therefore no significant 
difference between the use of Top-10, Top-15, and “all” 
terms approach, however it is possible that the smaller set 
of terms may be over-fit to the training set and may be 
less applicable when used to classify requirements from 
different sources.   

4.3 Classification results

A confusion matrix is a useful instrument for 
analyzing classification results [9], as it has the ability to 
depict true and false positives as well as true and false 
negatives.  Table 5 illustrates the confusion matrix for the 
classification results for Top-15.  

The correct classifications (true positives) are 
depicted on the diagonal, and have been highlighted in the 
diagram.  For example, the matrix shows that 16 

availability NFRs were correctly categorized.  By looking 
in the column labeled “A” for availability we also see that 
8 maintainability requirements were incorrectly classified 
as availability.  Additionally operational, performance, 
scalability, performance, and usability requirements were 
also similarly incorrectly classified.  Looking across the 
row labeled “Availability” we also see that availability 
requirements were incorrectly classified under several 
NFR types including three as ‘look-and-feel’, and six as 
‘maintainability’.  Although there are only 18 actual 
availability requirements, the multiple classification 
approach means that many of them will be classified more 
than once. 

Table 6 reports the three metrics of recall, precision, 
and specificity that were derived from the confusion 
matrix for each NFR type.  Recall is computed as  

ivesFalseNegatvesTruePositi
vesTruePositirecall

+
= , while precision is 

defined as 
ivesFalsePositvesTruePositi

vesTruePositiprecision
+

= .

Specificity in binary classification is the proportion of true 
negatives to all negatives [1] and is computed as 

Table 5. Confusion matrix of the classification

Classified as Actual Total# 
A L LF MN O PE SC SE US 

Availability 18 16 0 3 6 10 10 6 4 10 
Legal 10 0 7 2 0 3 1 0 1 5 
Look-and-feel 35 0 7 18 9 20 0 1 9 22 
Maintainability 17 8 0 5 15 11 4 5 3 10 
Operational 61 10 0 32 10 44 3 11 17 42 
Performance 48 20 1 7 7 27 30 12 20 35 
Scalability 18 11 0 5 4 12 3 13 6 11 
Security 57 6 3 10 12 38 5 8 46 38
Usability 62 13 4 26 7 34 14 24 35 61

Table 6. Results using top-15 terms at classification 
threshold value of 0.04 

NFR Type Recall Precision Specificity 
Availability 0.8889 0.2462 0.7792 
Legal 0.7000 0.3684 0.9525 
Look-and-feel 0.5143 0.2093 0.6907 
Maintainability 0.8824 0.2459 0.8220 
Operational 0.7213 0.2604 0.4151 
Performance 0.6250 0.1887 0.8561 
Scalability 0.7222 0.2000 0.7825 
Security 0.8070 0.2771 0.6468 
Usability 0.9839 0.2798 0.3447 
Overall 0.7669 0.2480  
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ivesFalsePositvesTrueNegati
vesTrueNegati

yspecificit
+

= . Here the 

specificity for a specific NFR type, say Availability, is 
computed as the proportion of all non- Availability NFR 
types that are not misclassified as Availability to the total 
number of non-Availability NFRs. A high specificity of a 
NFR type indicates the ability of the classifier to correctly 
differentiate this NFR from others. 

As depicted in Table 6, different NFR types 
responded differently to the classification method. 
Usability had the highest recall of 98.39%, and the 
confusion matrix shows that only 1 out of the 62 usability 
NFRs were misclassified or unclassified. However, 
usability NFR also had the lowest specificity of 34.47%, 
meaning it was quite difficult to differentiate non-usability 
NFRs from usability ones. As shown in the last column of 
the confusion matrix, there are a total of 173 non-usability 
NFRs that have been misclassified as usability. In contrast 
look-and-feel achieves the lowest recall of 51.43% and a 
specificity of 69.07%.  

4.4 Analysis of results 

 In general these results suggest that the NFR-
Classifier can effectively detect several different types of 
NFRs, but that additional work is needed to improve 
results for certain NFR types such as ‘look-and-feel.’  It 
was observed for this NFR type, that categories of words 
such as colors tended to occur across multiple 
requirements, and future work will therefore investigate 
the possibility of using categories of indicator terms or 
extended training to improve these retrieval results. 

5.   Industrial case study 

As an initial proof-of-concept the indicator terms 
mined from the fifteen projects were used to detect and 
classify candidate NFRs from a word document 
describing the customer requirements for an integrated 
engineering toolset (IET) under development at Siemens 
Logistics and Automation plant.  The IET document 
contained 137 pages, 2,250 paragraphs, and 30,374 words.  
To classify the NFRs in the document, it was first saved 
as a text file, parsed to remove unwanted characters, and 
then deconstructed into 2,064 “sentences.” These 
sentences were not necessarily grammatically complete, 
as they included bullet points, and text extracted from 
tables etc.  Some sentences corresponded to actual 
requirements in the text and others to less structured 
narrative.  The data was treated to remove stop words and 
stem terms to their roots and was then parsed by the NFR 
classifier.  In addition to automated classification, all of 
the sentences were manually classified into NFR types in 
order to create an ‘answer’ set against which classification 

results could be compared.  The counts for each NFR type 
are depicted in Table 7. 

5.1  Fixed key words 

In the first experiment, the fixed keywords shown in 
Table 1 were used to classify security and performance 
NFRs.  Security NFRs were retrieved with recall of  58%, 
precision of 30%, and specificity of 89%, while 
performance NFRs were retrieved with recall of 35%, 
precision of 22%, and specificity of 92%.  These results 
strengthened our earlier conjecture that the use of this 
fixed set of keywords did not consistently produce good 
classification results. 

5.2  Using prior indicator terms  

In the second experiment, the terms extracted from 
the 15 original SRS’s were used.  Both “Top-15” and “all” 
indicator term approaches were evaluated, however no 
significant differences were observed in recall and 
precision metrics.  Results from the “all” indicator 
approach which showed slightly higher recall, are shown 
in Table 7.  Results using these previously mined 
indicator terms were relatively good for availability, 
security, and usability, which all had recall values around 
80%, but were disappointing for several of the other NFR 
types.  For example look-and-feel and performance NFRs 
were retrieved only at recall levels of approximately 33%, 
while legal, operational, and scalability requirements also 
returned relatively low recall values.  

An analysis of the targeted NFRs in the user 
requirements document revealed a mismatch of terms 
between the MS Projects and the IET data. For example, 
performance NFRs in the high-level IET document tended 
to use more general terms such as “fast” and “quickly”, 
compared to the much more precise use of terms such as 
“per second” in the MS project training sets.  This 
mismatch explained why indicator terms mined from the 
original training sets had not been effective in classifying 
certain types of NFR in the new data set. 

5.3  Retraining the classifier 

Because of the poor classification results from the 
first two experiments we decided to conduct a third study 
in which the NFR-Classifier was retrained using a training 
set composed of one third of the sentences in the IET 
document.   The training set was used to mine new 
indicator terms which were then used to classify NFRs in 
the remaining two thirds of the document.  The fraction of 
“one third” was selected to provide sufficient NFRs in 
each type for training purposes. One third of the 
requirements from each requirement type, including 
functional requirements were randomly selected for the 
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training set.  Results obtained using the new indicator 
terms were generally much improved. All of the 
availability requirements were recalled; operational, 
security, and usability NFRs were recalled at relatively 
high values ranging from 73 - 87%; and only the NFR 
type of look-and-feel performed badly with a recall of 
40%.  In fact even this was a significant improvement 
from the previous recall value of 13%.  There were 
insufficient scalability requirements in the IET document 
to train the tool to recognize this type of NFR.  Overall, 
recall rose from 62.9% to 79.9% and precision also 
increased from 35.2% to 42.5%. 

The results from this initial study suggested that 
retraining the NFR-classifier using a training set that is 
‘closer’ to the data being classified significantly improved 
the results.  Additional research is needed to better 
understand whether a set of indicator terms built from a 
much larger training set would be applicable across a 
broader range of projects, or if a hybrid approach could be 
used which takes as a starting point a set of standard 
indicator terms and then enhances and refines the terms 
during a training session.  In this case a hybrid approach 
would have averted the problem of having insufficient 
scalability requirements in the new training set.   

6. Training set size 

In our experiments, we noticed that recall values 
tended to be higher for NFR types that were better 
represented in the training set. For NFR types whose 
relative size in the training set was equal to 7% or higher, 
the recall values increased with the number of pre-
classified NFRs of those types used to train the classifier. 
When we considered only those NFR types with a higher 
number of requirements in the training set, the correlation 
value between recall and NFR relative size was equal to 
0.723 for the MS project data and was equal to 0.833 for 
the IET data, showing a strong positive association. 

Although these results do not prove the positive 
association between recall and training set size to be true 
in general, it seems intuitively correct that the NFR 
classifier is expected to perform better for NFR types that 
have a higher number of requirements in the training set.  

7. Conclusions 

 This paper has introduced a new approach based on 
information retrieval methods for detecting and 
classifying non functional requirements from both 
structured requirements specifications as well as free-form 
text.  Although it still requires an analyst to evaluate the 
correctness of candidate NFRs, it requires less effort than 
previous semi-automated classification methods such as 
the Theme/Doc method [3].  Having the ability to classify 
NFRs in this way is useful for software engineers as they 
design, construct, and analyze a software system because 
it can help them to understand stakeholders’ needs and to 
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Figure 2.  Possible correlation between training set 
size and recall 

Table 7.  Results from retrieving and classifying NFRs from IET requirements document 

Using "all" indicator terms mined from  
15 MS projects 

Using indicator terms mined from  
30% of IET Data QualityType 

NFR count 
by Type Recall Precision Specificity NFR count 

by Type* Recall Precision Specificity 

Availability 18 0.917 0.550 0.963 12 1.000 0.261 0.860 
Legal 9 0.333 0.182 0.964 6 0.667 0.235 0.948 
Look & Feel 15 0.300 0.059 0.804 10 0.400 0.182 0.926 
Maintainability 33 0.591 0.394 0.914 22 0.636 0.203 0.763 
Operability 73 0.333 0.235 0.749 48 0.813 0.488 0.801 
Performance 23 0.200 0.375 0.979 15 0.600 0.474 0.958 
Scalability 2 1.000 0.030 0.874 2 Insufficient data to mine terms 
Security 29 0.895 0.134 0.534 19 0.737 0.341 0.885 
Usability 183 0.820 0.730 0.722 122 0.877 0.618 0.500 
All NFRs* 0.599 0.299  0.799 0.435

 * Reflects the number of NFRs remaining after the training set was extracted.
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see cohesive views of various system constraints. 
Candidate NFRs retrieved from stakeholders’ interviews 
or meeting minutes, can be detected and classified by the 
tool and then used as input into architectural design 
meetings or retrieved by a security engineer as he or she 
analyzes specific security concerns.  Candidate aspects 
can be evaluated early in the design process, saving costs 
that would otherwise have been incurred in later 
refactoring efforts.  For example, a tool currently under 
development at DePaul University incorporates NFR 
detection into a collaborative tool for modeling system-
wide non-functional goals.  The viewpoints provided by 
the NFR tool provide useful inputs into the modeling 
process.   
 This paper has provided an initial validation of the 
approach but additional work needs to be conducted to 
answer critical questions such as whether a larger training 
set might improve consistency of classification results 
across NFR types and across different projects and 
organizations. It will also be interesting to investigate 
under what conditions retraining is necessary and whether 
the use of a hybrid approach incorporating standard 
keywords, previously mined terms, and retraining of the 
tool within the current context could improve results.   
The examples in this paper focused on classifying NFRs 
and high-level aspects, but future work is needed to 
evaluate the technique against intermediate level aspects 
such as logging and authentication. These open issues will 
be examined in our ongoing work. 
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