
The Detection and Classification of Non-Functional Requirements
with Application to Early Aspects

Jane Cleland-Huang, Raffaella Settimi, Xuchang Zou, Peter Solc
Center for Requirements Engineering

School of Computer Science, Telecommunications, and Information Systems
DePaul University

{jhuang,rsettimi,xzou}@cs.depaul.edu

Abstract

This paper introduces an information retrieval based
approach for automating the detection and classification
of non-functional requirements (NFRs). Early detection
of NFRs is useful because it enables system level
constraints to be considered and incorporated into early
architectural designs as opposed to being refactored in at
a later time. Candidate NFRs can be detected in both
structured and unstructured documents, including
requirements specifications that contain scattered and
non-categorized NFRs, and freeform documents such as
meeting minutes, interview notes, and memos containing
stakeholder comments documenting their NFR related
needs. This paper describes the classification algorithm
and then evaluates its effectiveness in an experiment
based on fifteen requirements specifications developed as
term projects by MS students at DePaul University. An
additional case study is also described in which the
approach is used to classifying NFRs from a large free
form requirements document obtained from Siemens
Logistics and Automotive Organization.

1. Introduction

Non-functional requirements (NFRs) describe
important constraints upon the development and behavior
of a software system. They specify a broad range of
qualities such as security, performance, availability,
extensibility, and portability. These qualities play a
critical role in the architectural design [15] and should
therefore be considered and specified as early as possible
during system analysis.

Unfortunately NFRs are often discovered in an ad-
hoc fashion relatively late in the development process.
Quality constraints of stakeholders, elicited during the
requirements gathering process, get documented across a
range of artifacts including memos, interview notes, and

meeting minutes, and analysts frequently fail to obtain a
clear perspective on the system-wide non-functional
requirements. Resulting requirements specifications are
often organized by functionality with non-functional
requirements scattered throughout the specification. This
can lead to important conflicts going undetected and
architectural solutions that fail to meet the stakeholders’
real needs. This paper proposes a solution to this problem
by introducing a method, known as the NFR-Classifier,
for retrieving and classifying NFRs scattered across both
structured and unstructured documents.

The NFR-Classifier can also be used to detect and
classify early aspects. An early aspect is a concern that
cross-cuts the dominant decomposition of a system [4]
and is found in the requirements specification or other
early design documents. Many “early aspects” are
identical to high-level NFRs such as security,
performance, portability, and usability. Intermediate
level aspects include concerns such as logging and
authentication, while lower-level concerns focus on
programmatic concepts such as buffering and caching.
The classification method described in this paper is
applicable to the high and intermediate level concerns that
are specified in the requirements specification or other
early documents. Lower level concerns that belong to the
solution domain at the programmatic or design level are
not discussed further. Early discovery of aspects is
significant not only for purposes of architectural design,
but also so that candidate aspects can be evaluated and
modeled in the design and code of the system, thereby
minimizing the need to ‘mine’ and refactor aspects from
the code at a later date.

The NFR-Classifier uses information retrieval
methods to find and identify NFRs. The method assumes
that different types of NFR are characterized by the use of
relatively distinct keywords that we call ‘indicator terms’.
When those indicator terms are learned for a specific NFR
type, they can be used to detect requirements, sentences,
or phrases, related to that type. The process, which is
depicted in Figure 1, includes the three primary phases of
mining, classification, and application. During the

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

training phase indicator terms are mined from existing
requirements specifications in which NFRs have been
manually categorized by type. These terms are then used
during the retrieval phase to detect and classify other
NFRs. Finally during the application phase, the classified
requirements are used to support more advanced software
engineering activities such as requirements negotiation or
architectural design.

The remainder of this paper is structured as follows.
Section 2 surveys existing methods for eliciting and
discovering non-functional requirements and early
aspects. This section also describes a preliminary
experiment we conducted using a fixed key-term
approach. Section 3 introduces the new NFR-Classifier
method, and describes the process for mining terms and
using them to classify NFRs. Section 4 reports on an
experiment we conducted to evaluate the effectiveness of
the approach using fifteen different requirements
specifications constructed as term projects by MS students
at DePaul University. Section 5 describes an industrial
case study based on a large user requirement document
developed for a project at Siemens Logistics and
Automation plant. In this study, the classification results
obtained from reusing previously mined indicator terms
are compared to results obtained from retraining the tool.
The observed positive association between the
performance of our classifier and the training set size is
discussed in Section 6, and Section 7 concludes with a
discussion of the application of this approach to the
requirements analysis process, and suggestions for future
work.

2. Existing NFR classification methods

 There are two primary approaches to NFR
classification. These include elicitation methods that
support stakeholders as they reason about, identify,
negotiate, and model NFRs; and also detection methods
for semi-automated or manual extraction of NFRs from a
variety of existing documents.

2.1 Elicitation techniques

Elicitation methods frequently rely upon creative
brainstorming or the use of checklists and NFR templates
to trigger stakeholders’ input. For example Win-Win
methods [12] provide generic checklists and require
stakeholders to contribute, prioritize, and negotiate NFRs
perceived to be important to the success of the system.
The Architectural Assessment Method (ATAM) models
NFRs using utility trees in which stakeholders describe
quality requirements within a hierarchical abstraction of
high-level goals [13]. The NFR framework provides
catalogs to help analysts define NFR quality goals,

potential implementation solutions, and to identify
conflicts [6]. All of these techniques provide stakeholders
with a structured approach for brainstorming and
documenting their NFR needs and also produce a set of
categorized NFRs. In these cases, the NFR-Classifier can
provide input into the process by retrieving and displaying
NFR related comments made by stakeholders and
recorded in documents produced during earlier elicitation
activities.

2.2 Detection techniques

With the increasing popularity of Aspect-Oriented
Programming (AOP), several researchers have developed
techniques for detecting low-level aspects in the design
and code and ‘early-aspects’ from requirements

Training
sets

(Classified
require-
ments)

Indicator
terms

Indicator
“miner”

Analyst classifies
requirements

Mining Phase

Classification Phase

NFR-
Classifier

Requirements

Extracted
“sentences”

Unclassified
software

requirements
specification

Unstructured
memos,

interview notes,
reports

Application Phase

NFR-
modeling

tools

Aspect-
Oriented

design tools
NFR
views

Various stakeholders use classified NFRs to
support software engineering activities

Analyst
confirms
or rejects
candidate
NFRs.

Figure 1. The NFR classification process

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

specifications [14]. At the program level, aspects can be
‘mined’ using clone detection techniques such as pattern
matching against the abstract syntax tree, or through
analyzing the system’s meta-model [5]. Runtime methods
such as the analysis of execution traces [19] can also be
used at the code level. None of these approaches are
applicable to the detection of early aspects, including
NFRs, which are less formally expressed and exist prior to
the system becoming executable.
 However, several semi-automated techniques have
been proposed for mining early aspects. Rosenhainer
proposed a basic information retrieval (IR) method that
required an analyst to manually search through the
requirements looking for candidate aspects [16]. If a
candidate aspect were found, then it was used as the basis
of an IR style query to find related requirements. Several
researchers have described effective methods for
implementing such artifact based searches [2,7,8,11,18].
However Rosenhainer’s approach is labor intensive as it
requires manual inspection to discover a ‘starting point’
for the analysis, and it also depends on finding a good
starting requirement that contains similar terms to other
aspect-related requirements.

The Theme/Doc method [3] also provides semi-
automated support for early aspect mining. An analyst
parses the requirements specification to identify
keywords, which are then used by the tool to generate a
visual representation of the relationships between
behaviors. This view is used by the analyst to identify
candidate aspects. Again, the approach is rather labor
intensive as the analyst needs to perform a preliminary
manual search for keywords in addition to a later analysis
of the candidate concerns. It also presupposes that the
requirements specification is grammatically structured in a
certain way. However Theme/Doc provides the
opportunity to discover aspect types that are unique to a
specific project in addition to commonly occurring types.

Sampaio et al proposed a method that uses natural
language processing to first identify viewpoints based on
nouns occurring in the specification and then to find
actions (ie verbs) that occur across multiple viewpoints.

This approach has potential for identifying unique aspect
types, but it requires significant user feedback to evaluate
viewpoints and assess the feasibility of the candidate
aspects. It may also miss aspects if different action verbs
are used to represent the same concern across different
viewpoints [17].

Although these techniques for early aspect
identification are applicable to the problem of NFR
classification, they all require significant user
involvement. This suggests the need to find a more
automated approach for identifying NFRs.

2.3 Keyword classification method

As a precursor to our work on the NFR-Classifier we
investigated whether a pre-defined fixed set of keywords
could be used to classify each type of NFR. This simpler
approach would avoid the need to develop and use a
training set. A small experiment was conducted in which
a set of keywords, listed in Table 1, were extracted from
catalogs of operationalization methods for security and
performance softgoal interdependency graphs (SIGs) [6].
These catalogs represent extensive bodies of knowledge
related to goals and potential solutions for each of these
NFRs and so provided a standardized set of keywords.
The keywords were used to retrieve NFRs from a set of
fifteen requirements specifications developed by DePaul
MS students as term projects for a course in Requirements
Engineering1. Any requirement containing one or more of
these keywords was classified as a candidate security or

1 Approximately 80% of the students in this course work
in the software industry as professionals. Out of the 45
students in the class the top fifteen projects were selected
for this experiment, based primarily upon grades assigned
by the course instructor. The projects represented a broad
range of topics. The high ratio of NFRs to functional
requirements reflects the time limitations that inhibited the
writing of a more complete set of requirements.
Requirements were specified using the Volere template
http://www.systemsguild.com/

Table 1. Results from fixed keyword retrieval and classification

NFR Type Keywords extracted from a SIG Catalog [6] Recall Precision Specificity

Security

Confidentiality, integrity, completeness, accuracy,
perturbation, virus, access, authorization, rule, validation,
audit, biometrics, card, key, password, alarm, encryption,
noise.

0.798 0.567 0.871

Performance
space, time, memory, storage, response, throughput, peak,
mean, index, compress, uncompress, runtime, perform,
execute, dynamic, offset, reduce, fixing, early, late

0.609 0.396 0.843

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

performance requirement respectively. A multiple
categorization approach was taken in which a requirement
containing both a security keyword and a performance
keyword was classified into both categories.

Results were evaluated for each NFR type using the
standard metrics of recall, precision, and specificity where
recall measures the number of NFRs that were correctly
retrieved and categorized; precision measures the total
number of correctly retrieved NFRs in respect to the total
number of retrieved NFRs [10], and specificity measures
the ability of the classifier to correctly reject requirements
that are not of the right NFR type [1]. The results of this
experiment are shown in Table 1 and indicate that the
security keywords returned a recall of 80% and precision
of 57%, while the performance keywords returned a recall
of 61% and 40% precision. Observation showed that
many of the security keywords were in fact shared by
other types of NFRs, and that several of the target NFRs
did not contain any of the keywords and so were not
retrieved. One of the primary stumbling blocks of this
approach (and the reason that we did not evaluate more
NFRs using this method) was the difficulty of finding
accepted and standardized catalogs for the other types of
NFRs specified in our data sets.

3. The NFR-Classifier

The NFR-Classifier addresses this problem by using a
training set to discover a set of weighted indicator terms
for each NFR type. This approach means that the NFR-
Classifier is limited to recognizing and retrieving NFR
types for which it has been trained. However this is not
overly limiting. Although more than one-hundred and
fifty NFR types and numerous lower level aspects have
been documented [6], in practice a much smaller subset of
common ones are generally of interest during the system
design process. The approach also has several benefits
over the standard keyword method. Indicator terms can
be automatically mined from existing pre-categorized
requirement specifications, and therefore customized for
an organization in accordance with their own standard
terminologies and policies.
 The NFR-classifier method consists of two stages.
During the first stage, a set of indicator terms is identified
for each NFR category. This step assumes the existence of
a set of correctly pre-classified requirements that can be
used for training. The requirements in the training set are
used to compute a probabilistic weight for each potential
indicator term in respect to each NFR type. The weight
measures how strongly an indicator term represents a
requirement type. For example, terms such as
“authenticate” and “access” that occur frequently in
security requirements and infrequently in other types of
requirements, represent strong indicator terms for security
NFRs, while other terms such as ‘ensure’ that occur less

frequently in security requirements or are found in several
different requirement types, represent much weaker
indicators.
 Once indicator terms are mined and weighted, they
can be used in a second step to classify additional
requirements. A probability value that represents the
likelihood that the new requirement belongs to a certain
NFR type is computed as a function of the occurrence of
indicator terms of that type in the requirement. A
requirement is then classified according to a certain NFR
type if it contains several indicator terms representative of
that type. Requirements receiving classification scores
above a certain threshold for a given NFR type will be
classified into that type, and all unclassified requirements
will be assumed to be functional requirements. Because
classification results can only be considered successful if a
high percentage of the target NFRs are detected for a
specific type, in all of the experiments described in this
paper the threshold was established with the objective of
achieving high recall results.
 Prior to classification, the requirements must be
preprocessed and reduced to a set of keywords [10]. The
preprocessing step first eliminates all common “stop”
words that do not provide any relevant information on the
document lexical content (for example conjunctions and
prepositions). The remaining words are then reduced to
their stemmed form, by eliminating plurals, past tenses,
and other suffixes. The following sections more formally
describe the two steps of mining and classification.

3.1 Indicator terms mining

 Let Q be a given requirement type. Indicator terms of
quality type Q are found by considering the set SQ of all
type Q NFRs in the training set. The cardinality of SQ is
defined as NQ. The frequency freq(dQ,i,t) of occurrence of
term t in document dQ,i is computed for each document in
SQ. Each term is assigned a weight score that measures
how well the term helps identify a requirement of quality
type Q.
 So for each type Q and keyword t, the weight score
PrQ(t) is defined as a probability value computed as
follows:

NP
tNP

tN
tN

d
tdfreq

N
t QQ

N

i iQ

iQ

Q
Q

Q)(
)(
)(

||
),(1)(Pr

1 ,

, ⋅⋅=
=

 (1)

The first factor
=

QN

i iQ

iQ

Q d
tdfreq

N 1 ,

,

||
),(1

in the expression

above computes the average frequency of occurrences of
term t in type Q NFRs rescaled by the documents size
|dQ,i|. The factor increases if a term appears more
frequently in type Q documents, and therefore it can be

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

considered as a potential indicator term for type Q NFRs.

The second factor
)(
)(

tN
tNQ is the percentage of Q type

documents in SQ containing t with respect to all
requirements in the training set containing t, whose
number is denoted by N(t). This factor decreases if the
indicator term t is used broadly throughout the
requirements specification. If the term is only used in Q
type requirements, it will evaluate to 1 for that type. The

third factor
Q

Q

NP
tNP)(

is the ratio between the number

NPQ(t) of system projects containing type Q documents
with term t and the number NPQ of all projects in the
training set with type Q NFRs. The purpose of this
rescaling factor is to decrease the weight PrQ(t) for terms
that are project specific, and to increase the weight for
terms that appear in several projects containing type Q
documents.

For each term t, a probability score PrQ(t) is
computed. Terms are ranked by decreasing order
according to PrQ(t). The top K terms are identified as
indicator terms for the type Q. Experiments to evaluate
and select the best value for K are presented in Section 4.

3.2 NFR classification

 A classification algorithm for NFRs is defined by
computing a probability score PrQ(R) that evaluates the
probability that a certain NFR R is classified as Q type.
This probability score depends on the lexical content of
requirement R. We assume that type Q NFRs are more
likely to contain indicator terms for that type.

 Let IQ be the set of indicator terms for a quality type
Q. We assume that the weighted indicator terms in IQ are
identified and their weights computed from a training set
that contains correctly pre-categorized NFRs. The
indicator terms are mined using the expression in (1).
 The classification score that an unclassified
requirement R belongs to a type Q is defined as follows:

∈

∈=

Q

Q

It
Q

IRt
Q

Q t

t
R

)(Pr

)(Pr
)(Pr (2)

 The numerator is computed as the sum of the term
weights of all type Q indicator terms that are contained in
R, and the denominator is the sum of the term weights for
all type Q indicator terms. The probabilistic classifier for a
given type Q will assign higher score PrQ(R) to an NFR R
that contains several strong indicator terms for Q. Results
on the application of our classifier are reported below.

4. Evaluating the classifier model

 The training set used in the experiments again
consisted of the 15 requirements specifications developed
as term projects by MS students at DePaul University.
These specifications contained a total of 326 NFRs and
358 functional requirements. NFR types included
availability, look-and-feel, legal, maintainability,
operational, performance, scalability, security, and
usability. As there were insufficient portability and
process requirements, these NFR types were not included
in the study. Counts for each requirement type are
displayed in Table 2, while Table 3 depicts the top 15
indicator terms that were mined from each NFR type.

Table 2: Counts of requirement specifications by project and quality type

 Project Number
Quality type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 TOTAL
Availability 1 1 1 0 2 1 0 5 1 1 1 1 1 1 1 18
LookAndFeel 1 2 0 1 3 2 0 6 0 7 2 2 4 3 2 35
Legal 0 0 0 3 3 0 1 3 0 0 0 0 0 0 0 10
Maintainability 0 0 0 0 0 3 0 2 1 0 1 3 2 2 2 16
Operational 0 0 6 6 10 15 3 9 2 0 0 2 2 3 3 61
Performance 2 3 1 2 4 1 2 17 4 4 1 5 0 1 1 48
Scalability 0 1 3 0 3 4 0 4 0 0 0 1 2 0 0 18
Security 1 3 6 6 7 5 2 15 0 1 3 3 2 2 2 58
Usability 3 5 4 4 5 13 0 10 0 2 2 3 6 4 1 62
TOTAL NFRs 8 15 21 21 37 44 8 71 8 15 10 20 19 16 12 326
Functional 20 11 47 25 36 26 15 20 16 38 22 13 3 51 15 358
TOTAL 28 26 68 47 73 70 23 91 24 53 32 33 22 67 127 684

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

4.1 Classifying the NFRs

To evaluate the effectiveness of the NFR-Classifier, a
leave-one-out cross validation technique was applied
against the fifteen software requirements specifications
(SRS). Fifteen iterations were conducted. During each
iteration indicator terms were extracted from fourteen
SRS’s that constituted the training set, and term weights
for each NFR type were calculated based on the function
in (1). Two alternate methods were evaluated for
selecting indicator terms from the training set:
1) Top K terms, where K is a positive number. For

each NFR type, the K terms with the highest weights
were selected as the indicator terms.

2) All terms, where every term with a non-zero weight
with regard to a specific NFR type was selected as an
indicator term for that type.

The extracted indicator terms were then used to classify
requirements in the remaining SRS using the function in
(2). A multiple classification scheme was used so that for
any given NFR type, all requirements that scored higher
than a certain threshold value were classified as that NFR
type. This meant that a single requirement could be
classified into more than one NFR type, although
implicitly if it represented an atomic requirement, it could
only logically belong to one type. As a side note, an
additional experiment was conducted to compare the
efficacy of multiple classification versus a “pick-top”
method in which each requirement was assigned to only
the NFR type for which it received the highest

classification value. When the pick-top method was used,
recall was problematic for almost all categories. For
example, recall dropped to 33% for legal, 9% for look-
and-feel, and 41% for maintainability. The average recall
obtained using this method was only 52% as opposed to
76% using the multi-category method. Based on these
results, the multiple-classification approach was adopted.

The goodness of the classifiers was evaluated by the
three metrics of recall, precision and specificity for each
NFR type in each single iteration of the experiment.
Overall results were calculated by combining the results
of the fifteen iterations. As each SRS was subjected to
classification in only one experiment, the combined
results therefore represented the classification of each
individual requirement only one time.

4.2 Selection of indicator terms

Three different values for K were used in our
experiments: K=5, K=10 and K=15. Table 4 shows the
overall recall and precision of the classification using

Table 4. Comparison of top-K versus “All” terms
extraction methods.

Indicator Selection
Method

Recall Precision

Top-5 0.6564 0.3242
Top-10 0.7423 0.2400
Top-15 0.7669 0.2480
ALL 0.7392 0.2720

Table 3. Top 15 indicator terms ‘mined’ from the training set

Rank Availability Legal
Look &
Feel

Maintain-
ability

Opera-
tional

Perform-
ance Scalability Security Usability

1 avail compli appear updat interfac second simultan onli us
2 achiev regul interfac mainten environ respons handl access easi
3 dai standard profession releas server time year author user
4 time sarban appeal new oper longer capabl user train
5 hour oxlei color chang product fast support inform product
6 pm php look dure system minut expect ensur abl
7 year pear simul promot databas take concurr data understand
8 technic legal product product browser process abl authent successfulli
9 downtim law compli addit window user number secur intuit

10 long estimat scheme everi web system user system learn
11 system regard logo budget comput let launch malici system
12 product complianc sound develop applic maximum process prevent click
13 seven rule brand season us complet next incorrect minut
14 defect requir feel integr internet flow product product self
15 asid izognmovi sea oper abl everi connect ar explanatori

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

Top-5, Top-10, Top-15, and ‘all’ indicator terms
respectively. A classification threshold of 0.04 was
maintained for all four of the experiments, meaning that
only requirements that were given scores greater than 0.04
for a particular NFR type were classified.

The results indicated that among the Top-K methods,
Top-5 returned the worst recall, about 10% lower than the
other two methods. The classification accuracy showed no
significant difference between the Top-10 and Top-15
methods. Precision remained at about 24% while recall
improved slightly from 74.23% to 76.69% when changing
the selection method from using Top-10 to Top-15 terms.
The results also indicated that if all terms were retained as
indicators then the recall was reduced by 2.7%, while
precision was increased by 2.4% compared to the Top-15
method. As recall and precision tend to trade-off against
each other, this difference was again considered relatively
insignificant. If the threshold had been slightly raised to
remove some of the extra ‘background noise’ caused by
the additional less significant terms, then recall would
have likely decreased and precision increased to levels
similar to Top-15.

Surprisingly, there was therefore no significant
difference between the use of Top-10, Top-15, and “all”
terms approach, however it is possible that the smaller set
of terms may be over-fit to the training set and may be
less applicable when used to classify requirements from
different sources.

4.3 Classification results

A confusion matrix is a useful instrument for
analyzing classification results [9], as it has the ability to
depict true and false positives as well as true and false
negatives. Table 5 illustrates the confusion matrix for the
classification results for Top-15.

The correct classifications (true positives) are
depicted on the diagonal, and have been highlighted in the
diagram. For example, the matrix shows that 16

availability NFRs were correctly categorized. By looking
in the column labeled “A” for availability we also see that
8 maintainability requirements were incorrectly classified
as availability. Additionally operational, performance,
scalability, performance, and usability requirements were
also similarly incorrectly classified. Looking across the
row labeled “Availability” we also see that availability
requirements were incorrectly classified under several
NFR types including three as ‘look-and-feel’, and six as
‘maintainability’. Although there are only 18 actual
availability requirements, the multiple classification
approach means that many of them will be classified more
than once.

Table 6 reports the three metrics of recall, precision,
and specificity that were derived from the confusion
matrix for each NFR type. Recall is computed as

ivesFalseNegatvesTruePositi
vesTruePositirecall

+
= , while precision is

defined as
ivesFalsePositvesTruePositi

vesTruePositiprecision
+

= .

Specificity in binary classification is the proportion of true
negatives to all negatives [1] and is computed as

Table 5. Confusion matrix of the classification

Classified as Actual Total#
A L LF MN O PE SC SE US

Availability 18 16 0 3 6 10 10 6 4 10
Legal 10 0 7 2 0 3 1 0 1 5
Look-and-feel 35 0 7 18 9 20 0 1 9 22
Maintainability 17 8 0 5 15 11 4 5 3 10
Operational 61 10 0 32 10 44 3 11 17 42
Performance 48 20 1 7 7 27 30 12 20 35
Scalability 18 11 0 5 4 12 3 13 6 11
Security 57 6 3 10 12 38 5 8 46 38
Usability 62 13 4 26 7 34 14 24 35 61

Table 6. Results using top-15 terms at classification
threshold value of 0.04

NFR Type Recall Precision Specificity
Availability 0.8889 0.2462 0.7792
Legal 0.7000 0.3684 0.9525
Look-and-feel 0.5143 0.2093 0.6907
Maintainability 0.8824 0.2459 0.8220
Operational 0.7213 0.2604 0.4151
Performance 0.6250 0.1887 0.8561
Scalability 0.7222 0.2000 0.7825
Security 0.8070 0.2771 0.6468
Usability 0.9839 0.2798 0.3447
Overall 0.7669 0.2480

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

ivesFalsePositvesTrueNegati
vesTrueNegati

yspecificit
+

= . Here the

specificity for a specific NFR type, say Availability, is
computed as the proportion of all non- Availability NFR
types that are not misclassified as Availability to the total
number of non-Availability NFRs. A high specificity of a
NFR type indicates the ability of the classifier to correctly
differentiate this NFR from others.

As depicted in Table 6, different NFR types
responded differently to the classification method.
Usability had the highest recall of 98.39%, and the
confusion matrix shows that only 1 out of the 62 usability
NFRs were misclassified or unclassified. However,
usability NFR also had the lowest specificity of 34.47%,
meaning it was quite difficult to differentiate non-usability
NFRs from usability ones. As shown in the last column of
the confusion matrix, there are a total of 173 non-usability
NFRs that have been misclassified as usability. In contrast
look-and-feel achieves the lowest recall of 51.43% and a
specificity of 69.07%.

4.4 Analysis of results

 In general these results suggest that the NFR-
Classifier can effectively detect several different types of
NFRs, but that additional work is needed to improve
results for certain NFR types such as ‘look-and-feel.’ It
was observed for this NFR type, that categories of words
such as colors tended to occur across multiple
requirements, and future work will therefore investigate
the possibility of using categories of indicator terms or
extended training to improve these retrieval results.

5. Industrial case study

As an initial proof-of-concept the indicator terms
mined from the fifteen projects were used to detect and
classify candidate NFRs from a word document
describing the customer requirements for an integrated
engineering toolset (IET) under development at Siemens
Logistics and Automation plant. The IET document
contained 137 pages, 2,250 paragraphs, and 30,374 words.
To classify the NFRs in the document, it was first saved
as a text file, parsed to remove unwanted characters, and
then deconstructed into 2,064 “sentences.” These
sentences were not necessarily grammatically complete,
as they included bullet points, and text extracted from
tables etc. Some sentences corresponded to actual
requirements in the text and others to less structured
narrative. The data was treated to remove stop words and
stem terms to their roots and was then parsed by the NFR
classifier. In addition to automated classification, all of
the sentences were manually classified into NFR types in
order to create an ‘answer’ set against which classification

results could be compared. The counts for each NFR type
are depicted in Table 7.

5.1 Fixed key words

In the first experiment, the fixed keywords shown in
Table 1 were used to classify security and performance
NFRs. Security NFRs were retrieved with recall of 58%,
precision of 30%, and specificity of 89%, while
performance NFRs were retrieved with recall of 35%,
precision of 22%, and specificity of 92%. These results
strengthened our earlier conjecture that the use of this
fixed set of keywords did not consistently produce good
classification results.

5.2 Using prior indicator terms

In the second experiment, the terms extracted from
the 15 original SRS’s were used. Both “Top-15” and “all”
indicator term approaches were evaluated, however no
significant differences were observed in recall and
precision metrics. Results from the “all” indicator
approach which showed slightly higher recall, are shown
in Table 7. Results using these previously mined
indicator terms were relatively good for availability,
security, and usability, which all had recall values around
80%, but were disappointing for several of the other NFR
types. For example look-and-feel and performance NFRs
were retrieved only at recall levels of approximately 33%,
while legal, operational, and scalability requirements also
returned relatively low recall values.

An analysis of the targeted NFRs in the user
requirements document revealed a mismatch of terms
between the MS Projects and the IET data. For example,
performance NFRs in the high-level IET document tended
to use more general terms such as “fast” and “quickly”,
compared to the much more precise use of terms such as
“per second” in the MS project training sets. This
mismatch explained why indicator terms mined from the
original training sets had not been effective in classifying
certain types of NFR in the new data set.

5.3 Retraining the classifier

Because of the poor classification results from the
first two experiments we decided to conduct a third study
in which the NFR-Classifier was retrained using a training
set composed of one third of the sentences in the IET
document. The training set was used to mine new
indicator terms which were then used to classify NFRs in
the remaining two thirds of the document. The fraction of
“one third” was selected to provide sufficient NFRs in
each type for training purposes. One third of the
requirements from each requirement type, including
functional requirements were randomly selected for the

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

training set. Results obtained using the new indicator
terms were generally much improved. All of the
availability requirements were recalled; operational,
security, and usability NFRs were recalled at relatively
high values ranging from 73 - 87%; and only the NFR
type of look-and-feel performed badly with a recall of
40%. In fact even this was a significant improvement
from the previous recall value of 13%. There were
insufficient scalability requirements in the IET document
to train the tool to recognize this type of NFR. Overall,
recall rose from 62.9% to 79.9% and precision also
increased from 35.2% to 42.5%.

The results from this initial study suggested that
retraining the NFR-classifier using a training set that is
‘closer’ to the data being classified significantly improved
the results. Additional research is needed to better
understand whether a set of indicator terms built from a
much larger training set would be applicable across a
broader range of projects, or if a hybrid approach could be
used which takes as a starting point a set of standard
indicator terms and then enhances and refines the terms
during a training session. In this case a hybrid approach
would have averted the problem of having insufficient
scalability requirements in the new training set.

6. Training set size

In our experiments, we noticed that recall values
tended to be higher for NFR types that were better
represented in the training set. For NFR types whose
relative size in the training set was equal to 7% or higher,
the recall values increased with the number of pre-
classified NFRs of those types used to train the classifier.
When we considered only those NFR types with a higher
number of requirements in the training set, the correlation
value between recall and NFR relative size was equal to
0.723 for the MS project data and was equal to 0.833 for
the IET data, showing a strong positive association.

Although these results do not prove the positive
association between recall and training set size to be true
in general, it seems intuitively correct that the NFR
classifier is expected to perform better for NFR types that
have a higher number of requirements in the training set.

7. Conclusions

 This paper has introduced a new approach based on
information retrieval methods for detecting and
classifying non functional requirements from both
structured requirements specifications as well as free-form
text. Although it still requires an analyst to evaluate the
correctness of candidate NFRs, it requires less effort than
previous semi-automated classification methods such as
the Theme/Doc method [3]. Having the ability to classify
NFRs in this way is useful for software engineers as they
design, construct, and analyze a software system because
it can help them to understand stakeholders’ needs and to

0.3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5

NFR type re la tive s ize

R
ec

al
l

MS projec ts

IET Data

Figure 2. Possible correlation between training set
size and recall

Table 7. Results from retrieving and classifying NFRs from IET requirements document

Using "all" indicator terms mined from
15 MS projects

Using indicator terms mined from
30% of IET Data QualityType

NFR count
by Type Recall Precision Specificity NFR count

by Type* Recall Precision Specificity

Availability 18 0.917 0.550 0.963 12 1.000 0.261 0.860
Legal 9 0.333 0.182 0.964 6 0.667 0.235 0.948
Look & Feel 15 0.300 0.059 0.804 10 0.400 0.182 0.926
Maintainability 33 0.591 0.394 0.914 22 0.636 0.203 0.763
Operability 73 0.333 0.235 0.749 48 0.813 0.488 0.801
Performance 23 0.200 0.375 0.979 15 0.600 0.474 0.958
Scalability 2 1.000 0.030 0.874 2 Insufficient data to mine terms
Security 29 0.895 0.134 0.534 19 0.737 0.341 0.885
Usability 183 0.820 0.730 0.722 122 0.877 0.618 0.500
All NFRs* 0.599 0.299 0.799 0.435

 * Reflects the number of NFRs remaining after the training set was extracted.

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

see cohesive views of various system constraints.
Candidate NFRs retrieved from stakeholders’ interviews
or meeting minutes, can be detected and classified by the
tool and then used as input into architectural design
meetings or retrieved by a security engineer as he or she
analyzes specific security concerns. Candidate aspects
can be evaluated early in the design process, saving costs
that would otherwise have been incurred in later
refactoring efforts. For example, a tool currently under
development at DePaul University incorporates NFR
detection into a collaborative tool for modeling system-
wide non-functional goals. The viewpoints provided by
the NFR tool provide useful inputs into the modeling
process.
 This paper has provided an initial validation of the
approach but additional work needs to be conducted to
answer critical questions such as whether a larger training
set might improve consistency of classification results
across NFR types and across different projects and
organizations. It will also be interesting to investigate
under what conditions retraining is necessary and whether
the use of a hybrid approach incorporating standard
keywords, previously mined terms, and retraining of the
tool within the current context could improve results.
The examples in this paper focused on classifying NFRs
and high-level aspects, but future work is needed to
evaluate the technique against intermediate level aspects
such as logging and authentication. These open issues will
be examined in our ongoing work.

Acknowledgments

 The work described in this paper was partially funded
by NSF grants CCR- 0306303 and CCR-0447594.
Additional funding and access to project artifacts was
provided by Siemens Corporate Research and Siemens
Logistics and Automation plant in Grand Rapids, MI.

References

[1] D.G. Altman and J.M. Bland,, “Statistics notes: diagnostic
tests 1: sensitivity and specificity”, British Medical Journal, 308,
1552. 1994.
[2] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia and E.
Merlo. “Recovering Traceability Links between Code and
Documentation”, IEEE Transactions on Software Engineering.
Vol. 28, No. 10, 2002, pp. 970-983.
[3] E. Baniassad and S. Clarke. “Finding Aspects in
Requirements with Theme/Doc”, In Proceedings of Early
Aspects 2004: Aspect-Oriented Requirements Engineering and
Architecture Design, Lancaster, UK, 22 Mar. 2004.
[4] E. Baniassan, P. Clements, J. Araujo, A. Moreira, A.
Rashid, and B. Tekinerdogan, “Discovering Early Aspects”,
IEEE Software, Vol 23, No 1, Jan/Feb 2006.
[5] M. Bruntink, A. van Deursen, T. Tourwe, R. van Engelen,
“An Evaluation of Clone Detection Techniques for Identifying

Crosscutting Concerns” , 20th Intn’l Conference on Software
Maintenance (ICSM’04), Chicago, Sept. 2004, pp. 200-209.
[6] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-
Functional Requirements in Software Engineering, Kluwer
Academic, 2000.
[7] J. Cleland-Huang, R. Settimi, C. Duan, X. Zou, "Utilizing
Supporting Evidence to Improve Dynamic Requirements
Traceability", International Requirements Engineering
Conference, Paris, France, Aug/Sept, 2005.
[8] J. Cleland-Huang, R. Settimi, O. BenKhadra, E.
Berezhanskaya, S. Christina, ”Goal-Centric Traceability for
Managing Non-Functional Requirements”, International
Conference on Software Engineering, St. Louis, USA, May
2005. pp. 362-371.
[9] T. Fawcett. “ROC Graphs: Notes and Practical
Considerations for Researchers”. HP Labs Tech Report HPL-
2003-4.
[10] W.B. Frakes and R. Baeza-Yates, Information retrieval:
Data structures and Algorithms, Prentice-Hall, Englewood
Cliffs, NJ, 1992
[11] J. Huffman Hayes, A. Dekhtyar, S. K. Sundaram,
“Advancing Candidate Link Generation for Requirements
Tracing: The Study of Methods”, IEEE Transactions on
Software Engineering, Vol. 32, No. 1, January 2006. pp. 4-19.
[12] H. In and B. W. Boehm, “Using WinWin Quality
Requirements Management Tools: A Case Study”. Annals
Software Eng. 11(1): 141-174 (2001)
[13] R. Kazman, M. Klein, and P. Clements, “ATAM: Method
for Architecture Evaluation”, CMU/SEI Technical Report,
CMU/SEI-2000-TR-004, ADA382629, Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2000.
Available online at:http://www.sei.cmu.edu/publications/
documents/00.reports /00tr004.html.
[14] A. Kellens and K. Mens, “A Survey of Aspect Mining
Tools and Techniques”, INGI Technical Report 2005-08, UCL,
Belgium, Deliverable 6.2a for the workpackage 6 of the IWT
project 040116 “AspectLab”. June 2005.
 [15] B. Nuseibeh, “Weaving Together Requirements and
Architecture”, IEEE Computer, Vol. 34, No. 3, March 2001, pp.
115-117.
[16] L. Rosenhainer, “Identifying Crosscutting Concerns in
Requirements Specifications”, Workshop on Early Aspects:
Aspect-Oriented Requirements Engineering and Architecture
Design, 2004, Vancouver, Canada, Oct. 2004.
http://trese.cs.utwente.nl/Docs/workshops/oopsla-early-aspects-
2004/http://trese.cs. utwente.nl/Docs/workshops/oopsla-early-
aspects-2004/
[17] A. Sampaio, N.Loughran, A. Rashid, P. Rayson (2005)
Mining Aspects in Requirements. Workshop on Early Aspects
(held with AOSD 2005).
[18] R. Settimi, J. Cleland-Huang, O. BenKhadra, J. Mody, W.
Lukasik, and C. DePalma, C., “Supporting Change in Evolving
Software Systems through Dynamic Traces to UML”, IEEE
International Workshop on Principles of Software Evolution,
Kyoto, Japan, (Sept. 2004), 49-54.
[19] P. Tonella and M. Ceccato, “Aspect Mining through the
Formal Concept Analysis of Execution Traces”, 11th Working
Conference on Reverse Engineering (WCRE’04), Netherlands,
Nov. 2004, pp. 112-121.

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

